In [1]:
#import functions
%pylab inline
# from MyUnits import *
from MyFunctions import *
from qutip import *
# from MyQubit import *
# import mpld3
import multiprocessing as mp
import itertools
import datetime
In [2]:
%%javascript
IPython.load_extensions('usability/codefolding/main');
IPython.load_extensions('toggle_all_line_number.js');
In [3]:
import scipy.constants as sc
In [100]:
import time
import datetime
from scipy.optimize import fsolve
In [147]:
# Time Hamiltonian
def Ht(t, args):
#
# evaluate the hamiltonian at time t.
#
H0 = args['H0']
c = args['c']
cDag = args['cDag']
A = args['A']
w = args['w']
s = args['s']
sx = args['sx']
return H0 + A * (c + cDag + 2 * s * sx)*cos(w*t) #(a * exp(1j*w*t) + aDag * exp(-1j*w*t))
def func(a,g,L,w_c,w_nr,w_q):
s,alfa = a
return (s+ g/(w_c+w_q),alfa+ L/(w_nr+w_q))
In [148]:
# Calc Spectrum
def calc_spectrum_6(N,M,P, w_c,w_nr, w_q,L,g,A,w=0, **kwargs):
# dispersive Qubit CPW NR
Delta = w_q - w_c
delta = w_q - w_nr
# qubit operators
sm = tensor(create(2),qeye(M),qeye(P))
sz = tensor(sigmaz(),qeye(M),qeye(P))
sx = tensor(sigmax(),qeye(M),qeye(P))
nq = sm.dag() * sm
xq = sm + sm.dag()
I = tensor(qeye(2), qeye(M),qeye(P))
# mechanical resonator operators
b = tensor(qeye(2),destroy(M),qeye(P))
n_b = b.dag() * b
x_b = b.dag() + b
p_b = b - b.dag()
# CPW operators
c = tensor(qeye(2),qeye(M),destroy(P))
n_c = c.dag() * c
x_c = c.dag() + c
p_c = c - c.dag()
# Identity
I = tensor(qeye(2),qeye(M),qeye(P))
# Hamiltonian
if 'Fred' in kwargs:
# s = -0.01999 + 0.00393001*w_q - 0.000689326*w_q**2 + 0.0000851242*w_q**3 - 4.92054e-6*w_q**4
# alfa = -0.000285256 + 0.0000784123 * w_q - 0.0000178779 * w_q **2 + 2.60578e-6* w_q**3 -1.65641e-7*w_q**4
s,alfa = fsolve(func,(0,0),args=(g,L,w_c,w_nr,w_q))
w_qt = w_q * exp(-2* s**2 - 2 * alfa**2)
H1 = w_c * c.dag()*c + w_nr * b.dag()*b
H2 = w_qt/2 * sz *(1 - 4 * s**2 * c.dag() * c)* (1 - 4 * alfa **2 * b.dag() * b )
H3 = (w_qt/(w_c + w_qt))* 2 * g * ( c.dag()*sm + c*sm.dag())
+ (w_qt/(w_nr + w_qt))* 2 * L * ( b.dag()*sm + b*sm.dag())
# Colapse Operators
c_op_list = []
kappa_n = 0.0005 # cavity
gamma_rel = 0.0001 # qubit
gamma_dep = 0.002 # qubit
Gamma_m = 0.01 # MR
Ta = 60e-3 #k
Tb = 60e-3 #k
Tq = 30e-3 #K
n_th_a = 1/(exp(sc.h*w_q*1e9/(sc.k*Ta)-1))
n_th_q = 1/(exp(sc.h*w_q*1e9/(sc.k*Tq)-1))
if Tb == 0:
n_th_b = 0
else:
n_th_b = 1/(exp(sc.h*w_nr*1e9/(sc.k*Tb)-1))
# cavity
c_op_list = []
rate = kappa_n * (1 + n_th_a)
if rate > 0.0:
c_op_list.append(sqrt(rate) * (c+s*sx))
rate = kappa_n * n_th_a
if rate > 0.0:
c_op_list.append(sqrt(rate) * (c.dag()+s*sx))
rate = gamma_rel * (1 + n_th_q)
if rate > 0.0:
c_op_list.append(sqrt(rate) * (1/2 * (sx
+ exp(-2*s**2 - 2 * alfa**2)*(
(1 - 4 * s**2 * c.dag() * c)
* (1 - 4 * alfa **2 * b.dag() * b )
*(sm-sm.dag())
-2*s*(c.dag()-c)*sz - 2*alfa*(b.dag()-b)*sz)
)))
rate = gamma_rel * (n_th_q)
if rate > 0.0:
c_op_list.append(sqrt(rate) * (1/2 * (sx
+ exp(-2*s**2 - 2 * alfa**2)*(-
(1 - 4 * s**2 * c.dag() * c)
* (1 - 4 * alfa **2 * b.dag() * b )
*(sm-sm.dag())
+2*s*(c.dag()-c)*sz + 2*alfa*(b.dag()-b)*sz)
)))
rate = gamma_dep / 2 * (1 + n_th_q)
if rate > 0.0:
c_op_list.append(sqrt(rate) * (sz*exp(-2*s**2-2*alfa**2)
* (1 - 4 * s**2 * c.dag() * c)
* (1 - 4 * alfa **2 * b.dag() * b )))
rate = Gamma_m * (1 + n_th_b)
if rate > 0.0:
c_op_list.append(sqrt(rate) * (b+alfa*sx))
rate = Gamma_m * n_th_b
if rate > 0.0:
c_op_list.append(sqrt(rate) *( b.dag()+alfa*sx))
# Solution Type
# if 'dispersive' in kwargs:
# H0 = H1 + H2a + H3 + H4 #+ H5
# rho = steadystate(H0,c_op_list)
# rho_b = rho*n_b
# rho_a = rho*sz
# rho_c = rho*c
# rho_d = rho*n_c
# return rho_c.tr(),rho_a.tr(),rho_b.tr(),rho_d.tr()
# if 'mapping' in kwargs:
# H0 = H1 + H2w + H3 + H4 #+ H5
# rho = steadystate(H0,c_op_list)
# rho_c = rho*c
# return rho_c.tr()
if 'energies'in kwargs:
H = H1 + H2 + H3
return H.eigenenergies() #+ H4
if 'energy'in kwargs:
H = H1 + H2 + H3
return H.eigenenergies(),s,alfa #+ H4
if 'time'in kwargs:
H0 = H1 + H2 + H3 #+ H4
H_args = {'H0': H0, 'c': c, 'cDag': c.dag() , 'A' : A , 'w': w, 's':s, 'sx':sx}
# rho = steadystate(H,c_op_list)
T = 2 * pi / w
U = propagator(Ht, T, c_op_list, H_args)
rho_ss = propagator_steadystate(U)
rho_b = rho_ss*n_b
rho_a = rho_ss*sz
rho_c = rho_ss*c + s*rho_ss*sx
rho_d = rho_ss*n_c
return rho_c.tr(),rho_a.tr(),rho_b.tr(),rho_d.tr()
In [149]:
N = 2
M = 2
P = 2
w_c = 5.0
w_nr = 3.5
g = 0.1
L = 0.001
Ej = 15
Ec = 0.223
w = 0
w_q_max = sqrt(8 * Ec * Ej) - Ec
w_q = 3.5
print(w_q_max)
d = 0.10
A = 0.00005# field aplitude
kwargs = {'num_cpus':26,'energy':1, 'Fred':1}
E,s,alfa= calc_spectrum_6(N,M,P, w_c,w_nr, w_q,L,g,A,w=0, **kwargs)
In [150]:
E - E[0],s,alfa
Out[150]:
In [172]:
N = 2
M = 2
P = 2
w_c = 5
w_nr = 3.5
g = 0.1
L = 0.001
Ej = 15
Ec = 0.223
w = 0
w_q_max = sqrt(8 * Ec * Ej) - Ec
print(w_q_max)
d = 0.10
A = 0.00005# field aplitude
# phi = linspace(0,pi/2,200)
x_i,x_f = 0.3,0.36
phi = pi*linspace(x_i,x_f,100)
x_vec = sqrt( 8 * Ec * Ej* abs(cos(phi))*sqrt(1+(d*tan(phi))**2) )-Ec
# energies = array([calc_spectrum_6(N,M,P, w_c,w_nr, w_q/2,L,g,A,w,**kwargs)
# for w_q in x_vec])
kwargs = {'num_cpus':26,'energies':1, 'Fred':1}
In [ ]:
In [173]:
# Energies
# variable to count the total number of tasks we need to do; used to create progress bar
task_count =len(x_vec)
# Check number of cpus to be used
if 'num_cpus' in kwargs:
num_cpu = kwargs['num_cpus']
if num_cpu == 1:
print("1 CPU; Serial Simulation")
else:
print("Parallel Simulation with %d CPUs " % num_cpu)
else:
num_cpu = 1
print("Serial Simulation")
## Program to run function in parallel:
try:
t_start = time.time() # start time simulation
time_1 = []
pool = mp.Pool(processes=num_cpu) # create the initial pool to run the simulation
# manager = mp.Manager()
# queue = manager.Queue()
# _update_progress_bar(1)
# task_args = a,z
results = [pool.apply_async(calc_spectrum_6,(N,
M,
P,
w_c,
w_nr,
a1,
L,
g,
A,
w),kwargs
,callback=None,error_callback=None) for a1 in x_vec]
#####N,M,P, w_c,w_nr, w_q,L,g,A,w=0
while True:
incomplete_count = sum(1 for x in results if not x.ready())
if incomplete_count == 0:
print("[100.0%] of the simulations calculated, Estimated Remaining time: 0.0s", end="\r")
print( "\nAll done! \nTotal time:%s"%datetime.timedelta(seconds=int(dif_time)))
break
else:
p = float(task_count - incomplete_count) / task_count * 100
dif_time = (time.time() - t_start)
#
if p > 0:
rem_time = (datetime.timedelta(seconds=int(dif_time*(100-p)/p)))
# rem_time_1 = (datetime.timedelta(seconds=int(dif_time/(task_count-incomplete_count))))
time_1.append(float(dif_time/(task_count- incomplete_count)))
# rem_time_1 = mean(time_1) *task_count
# rem_time_1 = (datetime.timedelta( seconds=int(mean(time_1) *task_count)))
rem_time_1 = time.strftime("%Z - %Y/%m/%d, %H:%M:%S", time.localtime(t_start+mean(time_1) *task_count))
else:
rem_time = '?'
rem_time_1 = 0
print("[%4.1f%%] of the simulations calculated, Estimated Remaining time: %s, (%s)"
%(p,rem_time,rem_time_1) , end="\r")
time.sleep(.25)
while not all([ar.ready() for ar in results]):
for ar in results:
ar.wait(timeout=0.1)
pool.terminate()
pool.join()
except KeyboardInterrupt as e:
pool.terminate()
pool.join()
raise e
energies_temp = [ar.get() for ar in results]
energies = asarray(energies_temp)
In [174]:
# Plot
fig, axes = subplots(1,1, figsize=(16,6))
x_inf = -1
x_sup = 10
for n in range(len(energies[0,:])):
axes.plot(phi/pi, (energies[:,n]-energies[:,0]),'-',linewidth=2)
# axes.plot(phi/pi, (energies[:,n]-energies[:,0])/2,'--')
if n < 4:
axes.text(x_i,energies[0,n]-energies[0,0],r'|%s>'%(n),fontsize=20)
axes.set_title('Full')
axes.set_ylim(x_inf, x_sup)
axes.set_xlabel(r'$\phi$', fontsize=18)
axes.set_ylabel(r'$E_n-E_0$', fontsize=18)
axes.hlines(w_nr,x_i,x_f,linestyles='dashed',linewidth=3,color='green')
axes.hlines(w_c,x_i,x_f,linestyles='dashed',linewidth=3)
axes.vlines(0.33,0,10,linestyles='dashed',linewidth=3)
Out[174]:
In [175]:
y_i,y_f = 4.9,5.1
y_vec = linspace(y_i,y_f,100)
a , b = zip(*itertools.product(x_vec,y_vec))
kwargs = {'num_cpus':26,'time':1, 'Fred':1}
In [176]:
# Run Spectrum
# Create from the original vectors the new vector with the correct number copies
a , b = zip(*itertools.product(x_vec,y_vec))
# variable to count the total number of tasks we need to do; used to create progress bar
task_count =len(x_vec)*len(y_vec)
# Check number of cpus to be used
if 'num_cpus' in kwargs:
num_cpu = kwargs['num_cpus']
if num_cpu == 1:
print("1 CPU; Serial Simulation")
else:
print("Parallel Simulation with %d CPUs " % num_cpu)
else:
num_cpu = 1
print("Serial Simulation")
## Program to run function in parallel:
t_start = time.time() # start time simulation
time_1 = []
try:
pool = mp.Pool(processes=num_cpu) # create the initial pool to run the simulation
# manager = mp.Manager()
# queue = manager.Queue()
# _update_progress_bar(1)
# task_args = a,z
results = [pool.apply_async(calc_spectrum_6,(N,
M,
P,
w_c,
w_nr,
a1,
L,
g,
A,
b1),kwargs
,callback=None,error_callback=None) for a1,b1 in zip(a,b)]
#####
while True:
incomplete_count = sum(1 for x in results if not x.ready())
if incomplete_count == 0:
print("[100.0%] of the simulations calculated, Estimated Remaining time: 0.0s", end="\r")
print( "\nAll done! \nMean time:%f"%(dif_time/task_count))
print( "\nTotal time:%s"%datetime.timedelta(seconds=int(dif_time)))
break
else:
p = float(task_count - incomplete_count) / task_count * 100
dif_time = (time.time() - t_start)
#
if p > 0:
rem_time = (datetime.timedelta(seconds=int(dif_time*(100-p)/p)))
# rem_time_1 = (datetime.timedelta(seconds=int(dif_time/(task_count-incomplete_count))))
time_1.append(float(dif_time/(task_count - incomplete_count)))
# rem_time_1 = mean(time_1) *task_count
# rem_time_1 = (datetime.timedelta( seconds=int(mean(time_1) *task_count)))
rem_time_1 = time.strftime("%Z - %Y/%m/%d, %H:%M:%S", time.localtime(t_start+mean(time_1) *task_count))
else:
rem_time = '?'
rem_time_1 = 0
print("[%4.1f%%] of the simulations calculated, Estimated Remaining time: %s, (%s)"
%(p,rem_time,rem_time_1) , end="\r")
time.sleep(.25)
while not all([ar.ready() for ar in results]):
for ar in results:
ar.wait(timeout=0.1)
pool.terminate()
pool.join()
except KeyboardInterrupt as e:
pool.terminate()
pool.join()
raise e
results = [ar.get() for ar in results]
In [177]:
# Reshape Results
#results = qload('Two_Dispersive_Simulation')
results_1 = asarray(results)
# qsave(results,name='One_Dispersive_Simulation_200x300')
#qsave(results,name='Two_Dispersive_Simulation')
# qsave(results,name='ThirtytyVolts')
tr_c = reshape(results_1[:,0],(-1,len(y_vec+1)))
tr_a = reshape(results_1[:,1],(-1,len(y_vec+1)))
tr_b = reshape(results_1[:,2],(-1,len(y_vec+1)))
tr_d = reshape(results_1[:,3],(-1,len(y_vec+1)))
In [178]:
# Plot Graphics
fig, ax = subplots(4,1, figsize=(16,20))
im = ax[0].pcolor(phi/pi,y_vec,transpose(log10(abs(tr_c))))#,vmin=0, vmax=1)
fig.colorbar(im, ax=ax[0])
# ax[0,0].set_xlim(4.27,4.39)
# ax[0,0].set_ylim(P_i,P_f)
ax[0].set_ylabel(r'Probe Frequency (GHz)',fontsize=20)
# ax[0].set_xlabel(r'Qubit Tone Frequency (GHz)',fontsize=10)
ax[0].set_title(r'$Tr[\rho c]$',fontsize=20)
im = ax[1].pcolor(phi/pi,y_vec,transpose((abs(tr_a))))#,vmin=0, vmax=1)
fig.colorbar(im, ax=ax[1])
# ax[0,0].set_xlim(4.27,4.39)
# ax[0,0].set_ylim(P_i,P_f)
ax[1].set_ylabel(r'Probe Frequency (GHz)',fontsize=20)
# ax[1].set_xlabel(r'Qubit Tone Frequency (GHz)',fontsize=10)
ax[1].set_title(r'$Tr[\rho \sigma_z]$',fontsize=20)
im = ax[2].pcolor(phi/pi,y_vec,transpose(log10(abs(tr_b))))#,vmin=0, vmax=1)
fig.colorbar(im, ax=ax[2])
# ax[0,0].set_xlim(4.27,4.39)
# ax[0,0].set_ylim(P_i,P_f)
ax[2].set_ylabel(r'Probe Frequency (GHz)',fontsize=20)
# ax[2].set_xlabel(r'Qubit Tone Frequency (GHz)',fontsize=10)
ax[2].set_title(r'$Tr[\rho b^\dagger b]$',fontsize=20)
im = ax[3].pcolor(phi/pi,y_vec,transpose((abs(tr_d))))#,vmin=0, vmax=1)
fig.colorbar(im, ax=ax[3])
# ax[0,0].set_xlim(4.27,4.39)
# ax[0,0].set_ylim(P_i,P_f)
ax[3].set_ylabel(r'Probe Frequency (GHz)',fontsize=20)
ax[3].set_xlabel(r'Flux ($\Phi_0$)',fontsize=20)
ax[3].set_title(r'$Tr[\rho c^\dagger c]$',fontsize=20)
Out[178]:
In [179]:
# Plot Graphic II
fig, axes = subplots(1,1, figsize=(16,10))
y_inf = y_i
y_sup = y_f
x_inf = x_i
x_sup = x_f
for n in range(len(energies[0,:])):
axes.plot(phi/pi, (energies[:,n]-energies[:,0]),'-',linewidth=1)
axes.plot(phi/pi, (energies[:,n]-energies[:,0])/2,'--')
# if n < 4:
# axes.text(.2,energies[0,n]-energies[0,0],r'|%s>'%(n),fontsize=20)
axes.set_title('Full')
axes.set_ylim(y_inf, y_sup)
axes.set_xlim(x_inf,x_sup)
axes.set_xlabel(r'$\phi$', fontsize=18)
axes.set_ylabel(r'Cavity Tone Frequency GHz', fontsize=18)
axes.hlines(w_nr,x_i,x_f,linestyles='dashed')
axes.hlines(w_c,x_i,x_f,linestyles='dashed')
# axes.vlines(0.245,0,10,linestyles='dashed',linewidth=3)
axes.vlines(0.33,0,10,linestyles='dashed')
im = axes.pcolor(phi/pi,y_vec,transpose(log10(abs(tr_c))))#axes.pcolor(phi/pi,y_vec,transpose((abs(tr))))#,vmin=0, vmax=1)
fig.colorbar(im, ax=axes)
# ax[0,0].set_xlim(4.27,4.39)
# ax[0,0].set_ylim(P_i,P_f)
# axes.set_ylabel(r'Qubit Tone Power(dBm)',fontsize=10)
# axes.set_xlabel(r'Qubit Tone Frequency (GHz)',fontsize=10)
# axes.set_title(r'$Tr[\rho\sigma_z]$',fontsize=20)
Out[179]:
In [397]:
phi = 0.33 * pi
w_q = sqrt( 8 * Ec * Ej* abs(cos(phi))*sqrt(1+(d*tan(phi))**2) )-Ec
x_i,x_f = 0.0,0.005
x_vec= linspace(x_i,x_f,60)
y_i,y_f = 4.98,5.02
y_vec = linspace(y_i,y_f,30)
a , b = zip(*itertools.product(x_vec,y_vec))
kwargs = {'num_cpus':26,'dispersive':1, 'Fred':1}
In [398]:
# Run Spectrum
# Create from the original vectors the new vector with the correct number copies
a , b = zip(*itertools.product(x_vec,y_vec))
# variable to count the total number of tasks we need to do; used to create progress bar
task_count =len(x_vec)*len(y_vec)
# Check number of cpus to be used
if 'num_cpus' in kwargs:
num_cpu = kwargs['num_cpus']
if num_cpu == 1:
print("1 CPU; Serial Simulation")
else:
print("Parallel Simulation with %d CPUs " % num_cpu)
else:
num_cpu = 1
print("Serial Simulation")
## Program to run function in parallel:
t_start = time.time() # start time simulation
time_1 = []
try:
pool = mp.Pool(processes=num_cpu) # create the initial pool to run the simulation
# manager = mp.Manager()
# queue = manager.Queue()
# _update_progress_bar(1)
# task_args = a,z
results = [pool.apply_async(calc_spectrum_6,(N,
M,
P,
w_c,
w_nr,
w_q,
a1,
g,
A,
b1),kwargs
,callback=None,error_callback=None) for a1,b1 in zip(a,b)]
#####calc_spectrum_6(N,M,P, w_c,w_nr, w_q,L,g,A,w=0, **kwargs)
while True:
incomplete_count = sum(1 for x in results if not x.ready())
if incomplete_count == 0:
print("[100.0%] of the simulations calculated, Estimated Remaining time: 0.0s", end="\r")
print( "\nAll done! \nMean time:%f"%(dif_time/task_count))
print( "\nTotal time:%s"%datetime.timedelta(seconds=int(dif_time)))
break
else:
p = float(task_count - incomplete_count) / task_count * 100
dif_time = (time.time() - t_start)
#
if p > 0:
rem_time = (datetime.timedelta(seconds=int(dif_time*(100-p)/p)))
# rem_time_1 = (datetime.timedelta(seconds=int(dif_time/(task_count-incomplete_count))))
time_1.append(float(dif_time/(task_count - incomplete_count)))
# rem_time_1 = mean(time_1) *task_count
# rem_time_1 = (datetime.timedelta( seconds=int(mean(time_1) *task_count)))
rem_time_1 = time.strftime("%Z - %Y/%m/%d, %H:%M:%S", time.localtime(t_start+mean(time_1) *task_count))
else:
rem_time = '?'
rem_time_1 = 0
print("[%4.1f%%] of the simulations calculated, Estimated Remaining time: %s, (%s)"
%(p,rem_time,rem_time_1) , end="\r")
time.sleep(.25)
while not all([ar.ready() for ar in results]):
for ar in results:
ar.wait(timeout=0.1)
pool.terminate()
pool.join()
except KeyboardInterrupt as e:
pool.terminate()
pool.join()
raise e
results = [ar.get() for ar in results]
In [399]:
#results = qload('Two_Dispersive_Simulation')
results_2 = asarray(results)
# qsave(results,name='One_Dispersive_Simulation_200x300')
#qsave(results,name='Two_Dispersive_Simulation')
# qsave(results,name='ThirtytyVolts')
tr_c = reshape(results_2[:,0],(-1,len(y_vec+1)))
tr_a = reshape(results_2[:,1],(-1,len(y_vec+1)))
tr_b = reshape(results_2[:,2],(-1,len(y_vec+1)))
tr_d = reshape(results_2[:,3],(-1,len(y_vec+1)))
In [400]:
# Plot Graphics
fig, ax = subplots(4,1, figsize=(16,20))
im = ax[0].pcolor(x_vec,y_vec,transpose(log10(abs(tr_c))))#,vmin=0, vmax=1)
fig.colorbar(im, ax=ax[0])
# ax[0,0].set_xlim(4.27,4.39)
# ax[0,0].set_ylim(P_i,P_f)
ax[0].set_ylabel(r'Probe Frequency (GHz)',fontsize=20)
# ax[0].set_xlabel(r'Qubit Tone Frequency (GHz)',fontsize=10)
ax[0].set_title(r'$Tr[\rho c]$',fontsize=20)
im = ax[1].pcolor(x_vec,y_vec,transpose((abs(tr_a))))#,vmin=0, vmax=1)
fig.colorbar(im, ax=ax[1])
# ax[0,0].set_xlim(4.27,4.39)
# ax[0,0].set_ylim(P_i,P_f)
ax[1].set_ylabel(r'Probe Frequency (GHz)',fontsize=20)
# ax[1].set_xlabel(r'Qubit Tone Frequency (GHz)',fontsize=10)
ax[1].set_title(r'$Tr[\rho \sigma_z]$',fontsize=20)
im = ax[2].pcolor(x_vec,y_vec,transpose(log10(abs(tr_b))))#,vmin=0, vmax=1)
fig.colorbar(im, ax=ax[2])
# ax[0,0].set_xlim(4.27,4.39)
# ax[0,0].set_ylim(P_i,P_f)
ax[2].set_ylabel(r'Probe Frequency (GHz)',fontsize=20)
# ax[2].set_xlabel(r'Qubit Tone Frequency (GHz)',fontsize=10)
ax[2].set_title(r'$Tr[\rho b^\dagger b]$',fontsize=20)
im = ax[3].pcolor(x_vec,y_vec,transpose((abs(tr_d))))#,vmin=0, vmax=1)
fig.colorbar(im, ax=ax[3])
# ax[0,0].set_xlim(4.27,4.39)
# ax[0,0].set_ylim(P_i,P_f)
ax[3].set_ylabel(r'Probe Frequency (GHz)',fontsize=20)
ax[3].set_xlabel(r'$\lambda$ GHz',fontsize=20)
ax[3].set_title(r'$Tr[\rho c^\dagger c]$',fontsize=20)
Out[400]: